Danh Mục

Bài 10 trang 86 SGK Toán 11 tập 1 - Chân trời sáng tạo


Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}}\);

b) \(\mathop {\lim }\limits_{x \to {2^ +}} \frac{x}{{2 - x}}\).

Phương pháp giải - Xem chi tiết

Bước 1: Đưa hàm số \(f\left( x \right)\) về tích của hai hàm số, trong đó một hàm số có giới hạn hữu hạn, còn một hàm số có giới hạn vô cực.

Bước 2: Áp dụng quy tắc xét dấu để tính giới hạn của tích.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Áp dụng giới hạn một bên thường dùng, ta có : \(\mathop {\lim }\limits_{x \to {4^ + }} \frac{1}{{x - 4}} =  + \infty \)

b) \(\mathop {\lim }\limits_{x \to {2^ + }} \frac{x}{{2 - x}} = \mathop {\lim }\limits_{x \to {2^+ }} \frac{{ - x}}{{x - 2}} = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right).\mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x - 2}}\)

Ta có: \(\mathop {\lim }\limits_{x \to {2^ + }} \left( { - x} \right) =  - \mathop {\lim }\limits_{x \to {2^ + }} x =  - 2;\mathop {\lim }\limits_{x \to {2^ +}} \frac{1}{{x - 2}} =  +\infty \)

\( \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} \frac{x}{{2 - x}} =  - \infty \)


© 2025 Luyện Thi 24/7. All Rights Reserved