Danh Mục

Bài 17 trang 57 SGK Toán 11 tập 2 - Cánh Diều


Tìm tập xác định của mỗi hàm số sau:

Đề bài

Tìm tập xác định của mỗi hàm số sau:

a)     \(y = \frac{5}{{{2^x} - 3}}\)

b)    \(y = \sqrt {25 - {5^x}} \)

c)     \(y = \frac{x}{{1 - \ln x}}\)

d)    \(y = \sqrt {1 - {{\log }_3}x} \)

Phương pháp giải - Xem chi tiết

Dựa vào tập xác định của hàm số đã học để xác định tập hàm định của từng hàm

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a)     Hàm số \(y = \frac{5}{{{2^x} - 3}}\) xác định \( \Leftrightarrow {2^x} - 3 \ne 0 \Leftrightarrow {2^x} \ne 3 \Leftrightarrow x \ne {\log _2}3\)

b)    Hàm số \(y = \sqrt {25 - {5^x}} \) xác định \( \Leftrightarrow 25 - {5^x} \ge 0 \Leftrightarrow {5^x} \le 25 \Leftrightarrow x \le 2\)

c)     Hàm số \(y = \frac{x}{{1 - \ln x}}\) xác định \( \Leftrightarrow \left\{ \begin{array}{l}1 - \ln x \ne 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\ln x \ne 1\\x > 0\end{array} \right. \ne \left\{ \begin{array}{l}x \ne e\\x > 0\end{array} \right.\)

d)    Hàm số \(y = \sqrt {1 - {{\log }_3}x} \) xác định:

 \( \Leftrightarrow \left\{ \begin{array}{l}1 - {\log _3}x \ge 0\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{\log _3}x \le 1\\x > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 3\\x > 0\end{array} \right. \Leftrightarrow 0 < x \le 3\)


© 2025 Luyện Thi 24/7. All Rights Reserved