Danh Mục

Bài 3 trang 79 SGK Toán 11 tập 1 - Chân trời sáng tạo


Tìm các giới hạn sau:

Đề bài

Tìm các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x + 3}}{{2x}}\);      

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3x + 1}}\);

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\).

Phương pháp giải - Xem chi tiết

Bước 1: Chia cả tử và mẫu cho lũy thừa bậc cao nhất của tử và mẫu.

Bước 2: Tính các giới hạn của tử và mẫu rồi áp dụng các quy tắc tính giới hạn để tính giới hạn.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{4x + 3}}{{2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\left( {4 + \frac{3}{x}} \right)}}{{2x}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{4 + \frac{3}{x}}}{2} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } 4 + \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{x}}}{{\mathop {\lim }\limits_{x \to  + \infty } 2}} = \frac{{4 + 0}}{2} = 2\)

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{x\left( {3 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\mathop {\lim }\limits_{x \to  - \infty } \frac{2}{{3 + \frac{1}{x}}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}.\frac{{\mathop {\lim }\limits_{x \to  - \infty } 2}}{{\mathop {\lim }\limits_{x \to  - \infty } 3 + \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{x}}} = 0.\frac{2}{{3 + 0}} = 0\).

c) \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2}\left( {1 + \frac{1}{{{x^2}}}} \right)} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}}\)

                                      \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + \frac{1}{{{x^2}}}} }}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{\sqrt {1 + 0} }}{{1 + 0}} = 1\)


© 2025 Luyện Thi 24/7. All Rights Reserved