Danh Mục

Bài 5.21 trang 123 SGK Toán 11 tập 1 - Kết nối tri thức


Cho hàm số (fleft( x right) = sqrt {x + 1} - sqrt {x + 2} ). Mệnh đề đúng là A. (mathop {lim }limits_{x to + infty } fleft( x right) = - infty ) B. (mathop {lim }limits_{x to + infty } fleft( x right) = 0) C. (mathop {lim }limits_{x to + infty } fleft( x right) = - 1) D. (mathop {lim }limits_{x to + infty } fleft( x right) = - frac{1}{2})

Đề bài

Cho hàm số \(f\left( x \right) = \sqrt {x + 1}  - \sqrt {x + 2} \). Mệnh đề đúng là

A. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \infty \)                     

B. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 0\)             

C. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - 1\)    

D. \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) =  - \frac{1}{2}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Đây là giớ hạn dạng \(\frac{0}{0}\), để khử dạng này ta nhân liên hợp. Sau đó, ta chia cả tử và mẫu cho lũy thừa cao nhất của n, rồi áp dụng quy tắc tính giới hạn.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có:

\(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {x + 1}  - \sqrt {x + 2} } \right) = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x + 1 - x - 2}}{{\sqrt {x + 1}  + \sqrt {x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{ - 1}}{{\sqrt {x + 1}  + \sqrt {x + 2} }} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\frac{{ - 1}}{x}}}{{\sqrt {1 + \frac{1}{x}}  + \sqrt {1 + \frac{2}{x}} }} = \frac{0}{2} = 0\)

Đáp án: B


© 2025 Luyện Thi 24/7. All Rights Reserved