Danh Mục

Giải bài 1 trang 42 SGK Toán 8 tập 1 - Cánh diều


Thực hiện phép tính:

Đề bài

Thực hiện phép tính:

a) \(\dfrac{{5{\rm{x}} - 4}}{9} + \dfrac{{4{\rm{x}} + 4}}{9}\)          

b) \(\dfrac{{{x^2}y - 6}}{{2{{\rm{x}}^2}y}} + \dfrac{{6 - x{y^2}}}{{2{{\rm{x}}^2}y}}\)

c) \(\dfrac{{x + 1}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x - 18}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x + 2}}{{{x^2} - 5{\rm{x}}}}\)                          

d) \(\dfrac{{7y}}{3} - \dfrac{{7y - 5}}{3}\)

 

e) \(\dfrac{{4{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} - \dfrac{{7{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}}\)                                                

g) \(\dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} - \dfrac{{x - y}}{{2y - x}}\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Áp dụng quy tắc cộng, trừ hai phân thức cùng mẫu, khác mẫu và phân thức đối để thực hiện các phép tính.

Lời giải chi tiết

a)

\(\dfrac{{5{\rm{x}} - 4}}{9} + \dfrac{{4{\rm{x}} + 4}}{9} \\= \dfrac{{5{\rm{x}} - 4 + 4{\rm{x}} + 4}}{9} \\= \dfrac{{9{\rm{x}}}}{9} \\= x\)

b)

\(\dfrac{{{x^2}y - 6}}{{2{{\rm{x}}^2}y}} + \dfrac{{6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - 6 + 6 - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{{x^2}y - x{y^2}}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{xy\left( {x - y} \right)}}{{2{{\rm{x}}^2}y}} \\= \dfrac{{x - y}}{{2{\rm{x}}}}\)

c)

\(\dfrac{{x + 1}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x - 18}}{{{x^2} - 5{\rm{x}}}} + \dfrac{{x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{x + 1 + x - 18 + x + 2}}{{{x^2} - 5{\rm{x}}}} \\= \dfrac{{3{\rm{x}} - 15}}{{x\left( {x - 5} \right)}} \\= \dfrac{{3\left( {x - 5} \right)}}{{x\left( {x - 5} \right)}} \\= \dfrac{3}{x}\)

d)

\(\dfrac{{7y}}{3} - \dfrac{{7y - 5}}{3} \\= \dfrac{{7y - 7y + 5}}{3} \\= \dfrac{5}{3}\)

e)

\(\dfrac{{4{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} - \dfrac{{7{\rm{x}} - 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{4{\rm{x}} - 1 - 7{\rm{x}} + 1}}{{3{\rm{x}}{y^2}}} \\= \dfrac{{-3{\rm{x}}}}{{3{\rm{x}}{y^2}}} \\= \dfrac{-1}{{{y^2}}}\)

g)

\(\dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} - \dfrac{{x - y}}{{2y - x}} \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \left( { - \dfrac{{x - y}}{{2y - x}}} \right) \\= \dfrac{{3y - 2{\rm{x}}}}{{x - 2y}} + \dfrac{{x - y}}{{x - 2y}} \\= \dfrac{{3y - 2{\rm{x}} + x - y}}{{x - 2y}} \\= \dfrac{{2y - x}}{{ - \left( {2y - x} \right)}} \\=  - 1\)


© 2025 Luyện Thi 24/7. All Rights Reserved