Đề bài
Sơn và Tùng thi đấu bóng bàn với nhau. Trận đấu gồm 5 ván độc lập. Xác suất thắng của Sơn trong mỗi ván là \(\frac{1}{4}\). Biết rằng mỗi ván không có kết quả hòa. Người thắng trận đấu nếu thắng ít nhất 3 ván đấu.
a) Gọi X là số trận thắng của Sơn. Hỏi X là biến ngẫu nhiên có phân bố xác suất gì?
b) Tính xác suất để Sơn thắng Tùng trong trận đấu.
Phương pháp giải - Xem chi tiết
Áp dụng chú ý về phân bố nhị thức ta tính được xác suất cần tìm
Lời giải chi tiết
a) X là biến ngẫu nhiên có phân bố xác suất nhị thức với tham số \(n = 5;p = \frac{1}{4}\).
b) Sơn thắng Tùng trong trận đấu tức là X ≥ 3.
Theo chú ý về phân bố nhị thức ta có:
\(\begin{array}{l}P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)\\{\rm{ = }}C_5^3{\left( {\frac{1}{4}} \right)^3}{\left( {\frac{3}{4}} \right)^2} + C_5^4{\left( {\frac{1}{4}} \right)^4}{\left( {\frac{3}{4}} \right)^1} + C_5^5{\left( {\frac{1}{4}} \right)^5}{\left( {\frac{3}{4}} \right)^0} \approx 0,1035\end{array}\)