Danh Mục

Giải bài 1.21 trang 18 SGK Toán 8 tập 1 - Kết nối tri thức


Cho hai đa thức:

Đề bài

Cho hai đa thức:

\(A = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1;\\B = 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2.\)

a)      Tìm đa thức C sao cho A-C=B;

b)      Tìm đa thức D sao cho A+D=B;

c)      Tìm đa thức E sao cho E-A=B;

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Sử dụng bài toán ngược tìm C,D,E. Sau đó sử dụng tính chất giao hoán, kết hợp các hạng tử đồng dạng với nhau rồi thu gọn.

Lời giải chi tiết

a)       

\(\begin{array}{l}A - C = B\\ C = A - B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 - 7{x^2}yz + 5x{y^2}z - 3xy{z^2} + 2\\ = \left( {7xy{z^2} - 3xy{z^2}} \right) + \left( { - 5x{y^2}z + 5x{y^2}z} \right) + \left( {3{x^2}yz - 7{x^2}yz} \right) - xyz + \left( {1 + 2} \right)\\ = 4xy{z^2} - 4{x^2}yz - xyz + 3\end{array}\)

b)

\(\begin{array}{l}A + D = B\\ D = B - A \\=  - \left( {A - B} \right) =  - C \\=  - 4xy{z^2} + 4{x^2}yz + xyz - 3.\end{array}\)

c)

\(\begin{array}{l}E - A = B\\E = A + B \\= 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + \left( {7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2} \right)\\ = 7xy{z^2} - 5x{y^2}z + 3{x^2}yz - xyz + 1 + 7{x^2}yz - 5x{y^2}z + 3xy{z^2} - 2\\ = \left( {7xy{z^2} + 3xy{z^2}} \right) + \left( { - 5x{y^2}z - 5x{y^2}z} \right) + \left( {3{x^2}yz + 7{x^2}yz} \right) - xyz + \left( {1 - 2} \right)\\ = 10xy{z^2} - 10x{y^2}z + 10{x^2}yz - xyz - 1\end{array}\)


© 2025 Luyện Thi 24/7. All Rights Reserved