Danh Mục

Giải bài 2.42 trang 57 sách bài tập toán 12 - Kết nối tri thức


Cho hình tứ diện (ABCD), chứng minh rằng: (overrightarrow {AB} = frac{1}{2}overrightarrow {AC} + frac{1}{2}overrightarrow {AD} + frac{1}{2}overrightarrow {CD} + overrightarrow {DB} ).

Đề bài

Cho hình tứ diện \(ABCD\), chứng minh rằng:

\(\overrightarrow {AB}  = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}\overrightarrow {CD}  + \overrightarrow {DB} \).

Phương pháp giải - Xem chi tiết

Bắt đầu biến đổi từ vế trái từng bước suy ra điều phải chứng minh.

Lời giải chi tiết

\(\begin{array}{l}\overrightarrow {AB}  = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AB}  = \frac{1}{2}\left( {\overrightarrow {AC}  + \overrightarrow {CB}  + \overrightarrow {AD}  + \overrightarrow {DB} } \right) = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}\left( {\overrightarrow {CB}  + \overrightarrow {DB} } \right)\\ = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}\left( {\overrightarrow {CD}  + \overrightarrow {DB}  + \overrightarrow {DB} } \right) = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}\overrightarrow {CD}  + \frac{1}{2} \cdot 2\overrightarrow {DB} \\ = \frac{1}{2}\overrightarrow {AC}  + \frac{1}{2}\overrightarrow {AD}  + \frac{1}{2}\overrightarrow {CD}  + \overrightarrow {DB} .\end{array}\)


© 2025 Luyện Thi 24/7. All Rights Reserved