Danh Mục

Giải bài 4.57 trang 69 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Cho tam giác ABC đều có độ dài cạnh bằng 3a

Đề bài

Cho tam giác \(ABC\) đều có độ dài cạnh bằng \(3a\). Lấy điểm \(M\) thuộc cạnh \(BC\) sao cho \(MB = 2MC.\) Tích vô hướng của hai vectơ \(\overrightarrow {MA} \) và \(\overrightarrow {MC} \) bằng

A. \(\frac{{{a^2}}}{2}\)

B. \( - \frac{{{a^2}}}{2}\)

C. \({a^2}\)

D. \( - {a^2}\)

Lời giải chi tiết

Ta có: \(\overrightarrow {MA}  = \overrightarrow {MB}  + \overrightarrow {BA}  =  - \overrightarrow {AB}  - \frac{2}{3}\overrightarrow {BC}  =  - \frac{1}{3}\overrightarrow {AB}  - \frac{2}{3}\overrightarrow {AC} \)

\(\overrightarrow {MC}  = \frac{1}{3}\overrightarrow {CB}  = \frac{1}{3}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

Ta có: \(\overrightarrow {MA} .\overrightarrow {MC}  = \left( { - \frac{1}{3}\overrightarrow {AB}  - \frac{2}{3}\overrightarrow {AC} } \right)\left( {\frac{1}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right)\)

\(\begin{array}{l} =  - \frac{1}{9}{\overrightarrow {AB} ^2} + \frac{2}{9}{\overrightarrow {AC} ^2} - \frac{1}{9}\overrightarrow {AB} .\overrightarrow {AC} \\ =  - \frac{1}{9}{\overrightarrow {AB} ^2} + \frac{2}{9}{\overrightarrow {AC} ^2} - \frac{1}{9}.AB.AC.\cos \widehat {BAC}\\ =  - \frac{1}{9}.9{a^2} + \frac{2}{9}.9{a^2} - \frac{1}{9}.9{a^2}.\cos {60^ \circ }\\ =  - {a^2} + 2{a^2} - {a^2}.\frac{1}{2} = \frac{{{a^2}}}{2}\end{array}\)

Chọn A.


© 2025 Luyện Thi 24/7. All Rights Reserved