Danh Mục

Giải bài 5 trang 63 sách bài tập toán 12 - Chân trời sáng tạo


Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng: a) \(\overrightarrow {OA'} + \overrightarrow {OB'} + \overrightarrow {OC'} + \overrightarrow {OD'} = 4\overrightarrow {OO'} \); b) \(\overrightarrow {DB} + \overrightarrow {DD'} = 2\overrightarrow {DI} \).

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\). Gọi \(O,O'\)lần lượt là tâm của các hình vuông \(ABCD\) và \(A'B'C'D'\); \(I\) là giao điểm của \(AC'\) và \(A'C\). Chứng minh rằng:

a) \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = 4\overrightarrow {OO'} \);

b) \(\overrightarrow {DB}  + \overrightarrow {DD'}  = 2\overrightarrow {DI} \).

Phương pháp giải - Xem chi tiết

Sử dụng quy tắc hình bình hành.

Lời giải chi tiết

a) \(\overrightarrow {OA'}  + \overrightarrow {OB'}  + \overrightarrow {OC'}  + \overrightarrow {OD'}  = \left( {\overrightarrow {OA'}  + \overrightarrow {OC'} } \right) + \left( {\overrightarrow {OB'}  + \overrightarrow {OD'} } \right) = 2\overrightarrow {OO'}  + 2\overrightarrow {OO'}  = 4\overrightarrow {OO'} \)

b) Ta có: \(A'B'\parallel C{\rm{D}},A'B' = C{\rm{D}}\)

Suy ra \(A'B'C{\rm{D}}\) là hình bình hành.

Do đó \(A'C\) và \(B'D\) cắt nhau tại trung điểm mỗi đường.

Vì \(I\) là trung điểm của \(A'C\) nên \(I\) là trung điểm của \(B'D\).

Suy ra \(\overrightarrow {DB}  + \overrightarrow {DD'}  = \overrightarrow {DB'}  = 2\overrightarrow {DI} \).


© 2025 Luyện Thi 24/7. All Rights Reserved