Danh Mục

Giải bài 55 trang 28 sách bài tập toán 12 - Cánh diều


Cho (m) thoả mãn (m > 0,m ne 1). Phát biểu nào sau đây là đúng? A. (intlimits_a^b {{m^x}dx} = {m^b} - {m^a}). B. (intlimits_a^b {{m^x}dx} = {m^a} - {m^b}). C. (intlimits_a^b {{m^x}dx} = frac{{{m^b}}}{{ln m}} - frac{{{m^a}}}{{ln m}}). D. (intlimits_a^b {{m^x}dx} = frac{{{m^a}}}{{ln m}} - frac{{{m^b}}}{{ln m}}).

Đề bài

Cho \(m\) thoả mãn \(m > 0,m \ne 1\). Phát biểu nào sau đây là đúng?

A. \(\int\limits_a^b {{m^x}dx}  = {m^b} - {m^a}\).

B. \(\int\limits_a^b {{m^x}dx}  = {m^a} - {m^b}\).

C. \(\int\limits_a^b {{m^x}dx}  = \frac{{{m^b}}}{{\ln m}} - \frac{{{m^a}}}{{\ln m}}\).

D. \(\int\limits_a^b {{m^x}dx}  = \frac{{{m^a}}}{{\ln m}} - \frac{{{m^b}}}{{\ln m}}\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức: \(\int {{a^x}dx}  = \frac{{{a^x}}}{{\ln a}} + C\).

Lời giải chi tiết

\(\int\limits_a^b {{m^x}dx}  = \left. {\frac{{{m^x}}}{{\ln m}}} \right|_a^b = \frac{{{m^b}}}{{\ln m}} - \frac{{{m^a}}}{{\ln m}}\).

Chọn C.


© 2025 Luyện Thi 24/7. All Rights Reserved