Danh Mục

Giải bài 56 trang 28 sách bài tập toán 12 - Cánh diều


Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S). Cho các hàm số (y = fleft( x right),y = gleft( x right)) liên tục trên (K). a) (int {left[ {fleft( x right).gleft( x right)} right]dx} = int {fleft( x right)dx} .int {gleft( x right)dx} ). b) (int {left[ {fleft( x right) + gleft( x right)} right]dx} = int {fleft( x right)dx} + int {gleft( x right)dx} ). c) (int {left[ {fleft( x right) - gleft( x right)} right]dx} = int {flef

Đề bài

Trong mỗi ý a), b), c), d), chọn phương án: đúng (Đ) hoặc sai (S).

Cho các hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(K\).

a) \(\int {\left[ {f\left( x \right).g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx} .\int {g\left( x \right)dx} \).

b) \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx}  + \int {g\left( x \right)dx} \).

c) \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx}  - \int {g\left( x \right)dx} \).

d) \(\int {\frac{{f\left( x \right)}}{{g\left( x \right)}}dx}  = \frac{{\int {f\left( x \right)dx} }}{{\int {g\left( x \right)dx} }}\).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của nguyên hàm: Cho hàm số \(y = f\left( x \right),y = g\left( x \right)\) liên tục trên \(K\).

• \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx} \) với \(k\) là hằng số khác 0.

• \(\int {\left[ {f\left( x \right) + g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx}  + \int {g\left( x \right)dx} \).

• \(\int {\left[ {f\left( x \right) - g\left( x \right)} \right]dx}  = \int {f\left( x \right)dx}  - \int {g\left( x \right)dx} \).

Lời giải chi tiết

Theo tính chất của nguyên hàm ta có: a) sai, b) đúng, c) đúng, d) sai.

a) S.

b) Đ.

c) Đ.

d) S.


© 2025 Luyện Thi 24/7. All Rights Reserved