Danh Mục

Giải bài 6.15 trang 46 sách bài tập toán 12 - Kết nối tri thức


Gieo hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7 là A. (frac{3}{{11}}). B. (frac{2}{{11}}). C. (frac{4}{{13}}). D. (frac{3}{{13}}).

Đề bài

Gieo hai con xúc xắc cân đối. Biết rằng có ít nhất một con xúc xắc xuất hiện mặt 5 chấm. Xác suất để tổng số chấm xuất hiện trên hai xúc xắc bằng 7 là

A. \(\frac{3}{{11}}\).

B. \(\frac{2}{{11}}\).

C. \(\frac{4}{{13}}\).

D. \(\frac{3}{{13}}\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức xác suất có điều kiện.

Lời giải chi tiết

Gọi A là biến cố: “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 7”;

      B là biến cố: “Có một con xúc xắc xuất hiện mặt 5 chấm”.

Ta cần tính \(P\left( {A|B} \right)\).

Ta có \(A = \left\{ {\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)} \right\}\)

\(B = \left\{ {\left( {5,1} \right);\left( {1,5} \right);\left( {2,5} \right);\left( {5,2} \right);\left( {3,5} \right);\left( {5,3} \right);\left( {4,5} \right);\left( {5,4} \right);\left( {5,5} \right);\left( {6,5} \right);\left( {5,6} \right)} \right\}\).

Suy ra \(AB = A \cap B = \left\{ {\left( {2,5} \right),\left( {5,2} \right)} \right\}\). Từ đó \(n\left( B \right) = 11,n\left( {AB} \right) = 2\). Do đó \(P\left( B \right) = \frac{{11}}{{36}},P\left( {AB} \right) = \frac{2}{{36}}\).

Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{2}{{11}}\).

Vậy ta chọn đáp án B.


© 2025 Luyện Thi 24/7. All Rights Reserved