Danh Mục

Giải bài tập 2 trang 75 SGK Toán 12 tập 2 - Chân trời sáng tạo


Cho hai biến cố (A) và (B) có (Pleft( A right) = 0,4); (Pleft( B right) = 0,8) và (Pleft( {A|bar B} right) = 0,5). Tính (Pleft( {Abar B} right)) và (Pleft( {A|B} right)).

Đề bài

Cho hai biến cố \(A\) và \(B\) có \(P\left( A \right) = 0,4\); \(P\left( B \right) = 0,8\) và \(P\left( {A|\bar B} \right) = 0,5\). Tính \(P\left( {A\bar B} \right)\) và \(P\left( {A|B} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức tính xác suất có điều kiện \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

Ta có \(P\left( {\bar B} \right) = 1 - P\left( B \right) = 1 - 0,8 = 0,2\).

Do \(P\left( {A|\bar B} \right) = \frac{{P\left( {A\bar B} \right)}}{{P\left( {\bar B} \right)}}\) nên \(P\left( {A\bar B} \right) = P\left( {A|\bar B} \right).P\left( {\bar B} \right) = 0,5.0,2 = 0,1\).

Ta có \(A\bar B\) và \(AB\) là các biến cố xung khắc và \(A\bar B \cup AB = A\) nên \(P\left( {AB} \right) = P\left( A \right) - P\left( {A\bar B} \right) = 0,4 - 0,1 = 0,3\).

Suy ra \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{0,3}}{{0,8}} = \frac{{3}}{{8}}\).


© 2025 Luyện Thi 24/7. All Rights Reserved