Danh Mục

Giải bài tập 5 trang 66 SGK Toán 12 tập 2 - Chân trời sáng tạo


Cho ba mặt phẳng \(\left( \alpha \right):x + y + 2z + 1 = 0\), \(\left( \beta \right):x + y - z + 2 = 0\) và \(\left( \gamma \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai? A. \(\left( \alpha \right) \bot \left( \beta \right)\) B. \(\left( \gamma \right) \bot \left( \beta \right)\) C. \(\left( \alpha \right)\parallel \left( \beta \right)\) D. \(\left( \alpha \right) \bot \left( \gamma \right)\)

Đề bài

Cho ba mặt phẳng \(\left( \alpha  \right):x + y + 2z + 1 = 0\), \(\left( \beta  \right):x + y - z + 2 = 0\) và \(\left( \gamma  \right):x - y + 5 = 0\). Trong các mệnh đề sau, mệnh đề nào sai?

A. \(\left( \alpha  \right) \bot \left( \beta  \right)\)

B. \(\left( \gamma  \right) \bot \left( \beta  \right)\)

C. \(\left( \alpha  \right)\parallel \left( \beta  \right)\)

D. \(\left( \alpha  \right) \bot \left( \gamma  \right)\)

Phương pháp giải - Xem chi tiết

Xác định các vectơ pháp tuyến của các mặt phẳng \(\left( \alpha  \right)\), \(\left( \beta  \right)\), \(\left( \gamma  \right)\). Nếu hai vectơ pháp tuyến cùng phương, thì hai mặt phẳng song song với nhau; nếu hai vectơ pháp tuyến có giá vuông góc với nhau thì hai mặt phẳng vuông góc với nhau.

Lời giải chi tiết

Các vectơ pháp tuyến của các mặt phẳng \(\left( \alpha  \right)\), \(\left( \beta  \right)\), \(\left( \gamma  \right)\) lần lượt là \(\overrightarrow {{n_1}}  = \left( {1;1;2} \right)\), \(\overrightarrow {{n_2}}  = \left( {1;1; - 1} \right)\), \(\overrightarrow {{n_3}}  = \left( {1; - 1;0} \right)\).

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 1.1 + 1.1 + 2.\left( { - 1} \right) = 0\), suy ra \(\left( \alpha  \right) \bot \left( \beta  \right)\).

Ta có \(\overrightarrow {{n_2}} .\overrightarrow {{n_3}}  = 1.1 + 1.\left( { - 1} \right) + \left( { - 1} \right).0 = 0\), suy ra \(\left( \gamma  \right) \bot \left( \beta  \right)\).

Ta có \(\frac{1}{1} \ne \frac{2}{{ - 1}}\), suy ra \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) không song song với nhau.

Ta có \(\overrightarrow {{n_1}} .\overrightarrow {{n_3}}  = 1.1 + 1.\left( { - 1} \right) + 2.0 = 0\), suy ra \(\left( \alpha  \right) \bot \left( \gamma  \right)\).

Vậy đáp án cần chọn là C.


© 2025 Luyện Thi 24/7. All Rights Reserved