Đề bài
Cho hình chóp S.ABCD với ABCD là hình bình hành, \(S(3; - 2;4)\), \(A(3;4;5)\), \(B(8;8;6)\), \(C(7;6;3)\). Viết phương trình đường thẳng chứa cạnh SB và đường thẳng chứa cạnh đáy AD của hình chóp.
Phương pháp giải - Xem chi tiết
Đường thẳng qua hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\) có vectơ chỉ phương \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\). Dùng công thức để lập phương trình tham số và chính tắc.
Phương trình tham số của đường thẳng đi qua điểm \(A({x_0},{y_0},{z_0})\) và có vectơ chỉ phương \(\vec a({a_1},{a_2},{a_3})\) là:
\(\left\{ {\begin{array}{*{20}{l}}{x = {x_0} + {a_1}t}\\{y = {y_0} + {a_2}t}\\{z = {z_0} + {a_3}t}\end{array}} \right.\quad (t \in \mathbb{R})\)
Phương trình chính tắc của đường thẳng:
\(\frac{{x - {x_0}}}{{{a_1}}} = \frac{{y - {y_0}}}{{{a_2}}} = \frac{{z - {z_0}}}{{{a_3}}}\)
Nếu biết hai điểm \(A({x_1},{y_1},{z_1})\) và \(B({x_2},{y_2},{z_2})\), vectơ chỉ phương của đường thẳng là \(\overrightarrow {AB} = ({x_2} - {x_1},{y_2} - {y_1},{z_2} - {z_1})\).
Lời giải chi tiết
Phương trình đường thẳng chứa cạnh SB:
- Vectơ chỉ phương: \(\overrightarrow {SB} = (8 - 3,8 + 2,6 - 4) = (5,10,2)\)
- Phương trình tham số:
\(\left\{ {\begin{array}{*{20}{l}}{x = 3 + 5t}\\{y = - 2 + 10t}\\{z = 4 + 2t}\end{array}} \right.\quad (t \in \mathbb{R})\)
Phương trình đường thẳng chứa cạnh đáy AD:
- Điểm D: Từ hình bình hành, ta suy ra:
\(\overrightarrow {AD} = \overrightarrow {BC} \quad \Rightarrow D = A + (C - B) = (3,4,5) + ((7,6,3) - (8,8,6)) = (2,2,2)\)
- Vectơ chỉ phương: \(\overrightarrow {AD} = (2 - 3,2 - 4,2 - 5) = ( - 1, - 2, - 3)\)
- Phương trình tham số:
\(\left\{ {\begin{array}{*{20}{l}}{x = 3 - t}\\{y = 4 - 2t}\\{z = 5 - 3t}\end{array}} \right.\quad (t \in \mathbb{R})\)