Danh Mục

Giải bài tập 6 trang 80 sách bài tập toán 12 - Chân trời sáng tạo


Cho hai biến cố độc lập (A) và (B) có (Pleft( A right) = 0,4;Pleft( B right) = 0,8). Tính (Pleft( {A|A cup B} right)). Làm tròn kết quả đến hàng phần trăm.

Đề bài

Cho hai biến cố độc lập \(A\) và \(B\) có \(P\left( A \right) = 0,4;P\left( B \right) = 0,8\). Tính \(P\left( {A|A \cup B} \right)\). Làm tròn kết quả đến hàng phần trăm.

Phương pháp giải - Xem chi tiết

‒ Sử dụng quy tắc nhân xác suất: Nếu \(A\) và \(B\) là hai biến cố độc lập thì \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\).

‒ Sử dụng quy tắc cộng xác suất: \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết

Vì \(A\) và \(B\) là hai biến cố độc lập nên theo quy tắc nhân xác suất ta có:

\(P\left( {AB} \right) = P\left( A \right).P\left( B \right) = 0,4.0,8 = 0,32\).

Theo quy tắc cộng xác suất ta có:

\(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 0,4 + 0,8 - 0,32 = 0,88\).

Ta có giao của hai biến cố A và \(A \cup B\) là A nên áp dụng công thức xác suất của biến cố A với điều kiện biến cố \(A \cup B\) đã xảy ra là:

\(P(A|A \cup B) = \frac{{P(A)}}{{P(A \cup B)}} = \frac{{0,4}}{{0,88}} \approx 0,45\).


© 2025 Luyện Thi 24/7. All Rights Reserved