1. Đường thẳng và đường tròn cắt nhau
|
Khi đường thẳng và đường tròn có hai điểm chung thì ta nói đường thẳng và đường tròn cắt nhau. |
Nếu đường thẳng và đường tròn cắt nhau thì mỗi điểm chung được gọi là một giao điểm.
Nhận xét: Đường thẳng a cắt đường tròn (O;R) khi khoảng cách từ tâm O đến đường thẳng a nhỏ hơn R và ngược lại.

2. Đường thẳng và đường tròn tiếp xúc nhau
|
Khi đường thẳng và đường tròn có đúng một điểm chung, ta nói đường thẳng và đường tròn tiếp xúc nhau tại điểm chung đó. |
Nếu đường thẳng và đường tròn tiếp xúc nhau thì đường thẳng được gọi là tiếp tuyến của đường tròn, điểm chung được gọi là tiếp điểm.
Nhận xét: Đường thẳng a tiếp xúc với đường tròn (O;R) khi khoảng cách từ tâm O đến đường thẳng a bằng R và ngược lại.

3. Đường thẳng và đường tròn không giao nhau
|
Khi đường thẳng và đường tròn không có điểm chung, ta nói đường thẳng và đường tròn không giao nhau. |
Nhận xét: Đường thẳng a và đường tròn (O;R) không giao nhau khi khoảng cách từ tâm O đến đường thẳng a lớn hơn R và ngược lại.

Nhận xét: Ta có thể nhận biết vị trí tương đối của đường thẳng a và đường tròn (O;R) thông qua hệ thức giữa khoảng cách d từ tâm O đến đường thẳng a và bán kính R được tóm tắt trong bảng sau:

