Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
1. Lý thuyết
- Định lí Thalès: Nếu một đường thẳng song song với một cạnh của tam giác và cắt hai cạnh còn lại thì nó định ra trên hai cạnh đó những đoạn thẳng tương ứng tỉ lệ.

|
GT |
\(\Delta ABC,B'C'//BC(B' \in AB,C' \in AC)\) |
|
KL |
\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}};\frac{{AB'}}{{B'B}} = \frac{{AC'}}{{C'C}};\frac{{B'B}}{{AB}} = \frac{{C'C}}{{AC}}\) |
- Định lí Thalès đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác.

|
GT |
\(\Delta ABC,D \in AB,E \in AC,\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}\) hoặc \(\frac{{AD}}{{BD}} = \frac{{AE}}{{CE}}\) hoặc \(\frac{{BD}}{{AB}} = \frac{{CE}}{{AC}}\) |
|
KL |
\(DE//BC\) |
- Hệ quả của định lí Thalès: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh thứ ba thì tạo ra một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho.

|
GT |
\(\Delta ABC,B'C'//BC(B' \in AB,C' \in AC)\) |
|
KL |
\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} = \frac{{B'C'}}{{BC}}\) |
Chú ý: Hệ quả trên vẫn đúng cho trường hợp đường thẳng a song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại.

Ở hai hình trên, tam giác ABC có BC // B’C’ \( \Rightarrow \frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} = \frac{{B'C'}}{{BC}}\).
2. Ví dụ minh họa
- Ví dụ về Định lí Thales:

Tam giác ABC, DE // BC \( \Rightarrow \frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}\) và \(\frac{{AD}}{{DB}} = \frac{{AE}}{{EC}}\).
- Ví dụ về Định lí Thales đảo:

Tam giác ABC có \(\frac{{AD}}{{DB}} = \frac{{AE}}{{EC}} \Rightarrow DE//BC\).
- Ví dụ về Hệ quả của định lí Thales:

Tam giác ABC, DE // BC \( \Rightarrow \frac{{AD}}{{AB}} = \frac{{AE}}{{AC}} = \frac{{DE}}{{BC}}\).
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.