Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
1. Lý thuyết
- Khái niệm rút gọn phân thức:
Khi chia cả tử và mẫu của một phân thức cho một nhân tử chung của chúng để được phân thức mới ( đơn giản hơn) thì cách làm đó được gọi là rút gọn phân thức.
- Quy tắc rút gọn phân thức: Muốn rút gọn một phân thức, ta làm theo 2 bước :
+ Bước 1: Phân tích tử và mẫu thành nhân tử (nếu cần).
+ Bước 2: Tìm nhân tử chung của tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung đó.
2. Ví dụ minh họa
Rút gọn phân thức \(\frac{{2{{(x + 1)}^2}}}{{4x(x + 1)}}\) ta được \(\frac{{2{{(x + 1)}^2}}}{{4x(x + 1)}} = \frac{{2(x + 1)}}{{4x}} = \frac{{x + 1}}{{2x}}\).
Rút gọn phân thức \(\frac{{{x^3} + 3{x^2} + 3x + 1}}{{{x^2} + x}}\) ta được \(\frac{{{x^3} + 3{x^2} + 3x + 1}}{{{x^2} + x}} = \frac{{{{(x + 1)}^3}}}{{x(x + 1)}} = \frac{{{{(x + 1)}^2}}}{x}\).
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.