Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
Đơn thức
Đa thức
Phép cộng, phép trừ đa thức
Phép nhân đa thức
Phép chia đa thức cho đơn thức
Các hằng đẳng thức đáng nhớ
Phân tích đa thức thành nhân tử
Tứ giác
Hình thang cân
Hình bình hành
Hình chữ nhật
Hình thoi
Hình vuông
Định lí Thales trong tam giác
Đường trung bình của tam giác
Tính chất đường phân giác trong tam giác
Thu thập và phân loại dữ liệu
Biểu diễn dữ liệu bằng bảng, biểu đồ
Phân tích số liệu thống kê dựa vào biểu đồ
Phân thức đại số
Tính chất cơ bản của phân thức đại số
Cộng, trừ phân thức
Nhân, chia phân thức
Phương trình bậc nhất một ẩn
Giải bài toán bằng cách lập phương trình
Khái niệm hàm số và đồ thị của hàm số
Hàm số bậc nhất và đồ thị của hàm số bậc nhất
Hệ số góc của đường thẳng
Kết quả có thể và kết quả thuận lợi
Cách tính xác suất của biến cố bằng tỉ số
Mối liên hệ giữa xác suất thực nghiệm với xác suất và ứng dụng
Hai tam giác đồng dạng
Ba trường hợp đồng dạng của tam giác
Định lí Pythagore và ứng dụng
Các trường hợp đồng dạng của tam giác vuông
Hình đồng dạng
Hình chóp tam giác đều
Hình chóp tứ giác đều
1. Lý thuyết
- Quy tắc cộng, trừ nhiều phân thức: Muốn cộng, trừ nhiều phân thức khác mẫu thức, ta thực hiện các bước:
- Quy đồng mẫu thức;
- Cộng, trừ các phân thức có cùng mẫu thức vừa tìm được.
- Tính chất phép cộng phân thức đại số: Phép cộng các phân thức cũng có các tính chất giao hoán, kết hợp:
+ Giao hoán: \(\frac{A}{B} + \frac{C}{D} = \frac{C}{D} + \frac{A}{B}; \)
+ Kết hợp: \(\left( {\frac{A}{B} + \frac{C}{D}} \right) + \frac{E}{F} = \frac{A}{B} + \left( {\frac{C}{D} + \frac{E}{F}} \right);\)
+ Cộng với 0: \(\frac{A}{B} + 0 = 0 + \frac{A}{B} = \frac{A}{B}.\)
Chú ý: Nhờ tính chất kết hợp nên trong một dãy phép cộng nhiều phân thức, ta có thể không cần đặt dấu ngoặc.
2. Ví dụ minh họa
\(\begin{array}{l}\frac{x}{{x + y}} + \frac{{2xy}}{{{x^2} - {y^2}}} - \frac{y}{{x + y}} = \frac{{x(x - y)}}{{(x + y)(x - y)}} + \frac{{2xy}}{{(x + y)(x - y)}} - \frac{{y(x - y)}}{{(x + y)(x - y)}}\\\frac{{{x^2} - xy + 2xy - xy + {y^2}}}{{(x + y)(x - y)}} = \frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}}\end{array}\)
📱 Tải app ngay để nhận giảm 50% sản phẩm PRO!
✅ Khám phá skincare, makeup, tóc giả, phụ kiện từ các thương hiệu yêu thích.
✨ Làm đẹp dễ dàng, giao hàng nhanh chóng tận tay bạn.